Propriedades nucleares
Por definição, quaisquer dois átomos com número idêntico de prótons nos seus núcleos pertencem ao mesmo elemento químico.
Átomos com número idêntico de prótons, mas diferente número de nêutrons são diferentes isótopos do mesmo elemento. Por exemplo, todos os átomos de hidrogénio admitem exatamente um único próton, mas existem isótopos sem nêutrons (hidrogénio-1), um nêutron (deutério), dois nêutrons (trítio) e mais do que dois nêutrons.
Os elementos conhecidos formam um conjunto de números atómicos, desde o hidrogénio, com apenas um único próton, até ao ununóctio, com 118 prótons. Todos os isótopos conhecidos de elementos com números atómicos maiores do que 82 são radioativos.
Na Terra existem naturalmente cerca de 339 nuclídeos, dos quais não se observou qualquer decaimento em 254 deles (aprox. 75%), sendo assim denominados isótopos estáveis. No entanto, em teoria só em 90 destes nuclídeos é que não é possível ocorrer decaimento. Nos 164 restantes, embora ainda não tenha sido observado qualquer decaimento, em teoria é possível que isso aconteça (no entanto, são igualmente classificados como estáveis). Para além destes, 34 nuclídeos radioativos têm uma meia-vida superior a 80 milhões de anos e um ciclo de vida suficiente grande para estarem presentes desde o nascimento do sistema solar. Os elementos deste conjunto de 288 nuclídeos são denominados nuclídeos primordiais. Conhece-se ainda mais 51 nuclídeos de vida curta que ocorrem de forma natural, enquanto produto do decaimento de nuclídeos primordiais (como o rádio a partir do urânio), ou produto de processos energéticos naturais na Terra, como o bombardeio de raios cósmicos (por exemplo, o carbono-14).
Existe pelo menos um isótopo estável em 80 elementos químicos. Regra geral, existem poucos isótopos estáveis para cada um destes elementos. Em média existem 3,2 isótopos estáveis por cada elemento, embora vinte e seis elementos tenham apenas um único isótopo estável. O estanho tem o maior número de isótopos estáveis (10). Os elementos Tecnécio, Promécio, e todos os elementos iguais ou superiores ao Bismuto não têm isótopos estáveis.
A estabilidade dos isótopos é influenciada pela proporção entre prótons e nêutrons e pela presença de determinados números de nêutrons e prótons que representam camadas quânticas abertas e fechadas. e preenchidas. Estas camadas correspondem a um conjunto de níveis de energia no interior do modelo de camadas do núcleo. As camadas preenchidas, como a camada preenchida de 50 prótons no estanho, oferece ao nuclídeo uma estabilidade acima do normal. Entre os 254 nuclídeos conhecidos, apenas quatro têm simultaneamente um número ímpar de prótons e um número ímpar de nêutrons: hidrogénio-2 (deutério), lítio-6, boro-10 e nitrogénio-14. Apenas quatro dos nuclídeos radioativos ímpar-ímpar que ocorrem naturalmente têm uma meia-vida superior a mil milhões de anos: potássio-40, vanádio-50, lantânio-138 e tântalo-180m. A maior parte dos núcleos ímpar-ímpar são altamente instáveis no que diz respeito ao decaimento beta, uma vez que os produtos do decaimento são par-par e por esse motivo ligados de maneira mais forte.
Massa
A massa de um átomo em repouso é geralmente expressa através da unidade de massa atómica (u), por vezes também designada por dalton (Da). Esta unidade corresponde a um duodécimo da massa de um átomo neutro livre de carbono-12, o que corresponde a aproximadamente 1,66 x10-27 kg. O hidrogénio-1, o mais leve isótopo de hidrogénio e o átomo com menor massa, tem um peso atómico de 1,007825 u.[31] O valor deste número é denominado massa atómica. Um dado átomo tem uma massa atómica aproximadamente igual (± 1%) ao seu número de massa vezes a massa da unidade de massa atómica. No entanto, este número não será um número inteiro exceto no caso do carbono-12.[32] O átomo estável mais pesado é o chumbo-208,[24] com 207,9766521 u de massa.
Como até os átomos de maior massa são muito leves para que se possa trabalhar diretamente neles, os químicos usam a unidade Mole. Um mole de átomos de qualquer elemento tem sempre o mesmo número de átomos (cerca de 6,022 x1023). Este número foi escolhido de forma a que se um elemento tiver uma massa atómica de 1 u, um mole de átomos desse elemento tenha uma massa exata de um grama. Em função da definição da unidade de massa atómica, cada átomo de carbono-12 tem uma massa atómica de exatamente 12 u, e portanto um mole de carbono-12 pesa exatamente 0,012 kg.
Tamanho e forma
Os átomos não possuem uma fronteira exterior definida, pelo que a sua dimensão é normalmente descrita em termos de raio atómico. Esta medida corresponde à distância de afastamento da nuvem de elétrons em relação ao núcleo central. Porém, isto assume que o átomo apresenta uma forma esférica, o que só se verifica no vácuo. O raio atómico pode ser derivado da distância entre dois núcleos quando dois átomos estão unidos por uma ligação química. O raio varia em função da localização do átomo na tabela periódica, do tipo de ligação química, do número de átomos vizinhos (número de coordenação) e de uma propriedade de mecânica quântica denominada spin. Na tabela periódica, o tamanho do átomo tende a aumentar à medida que se desce as colunas, mas diminui quando se cruza as linhas da esquerda para a direita. O átomo de menor dimensão é o hélio, com um raio de 32 pm. Um dos maiores é o césio com 225 pm. Quando sujeitos a campos externos, como um campo elétrico, a forma dos átomos pode-se desviar em relação à esfera. A deformação depende da magnitude do campo e do tipo de órbita das camadas exteriores de elétrons. Os desvios esféricos podem ser observados, por exemplo, em cristais, nos quais se pode verificar a ocorrência de grandes campos elétricos em pontos de baixa simetria na malha cristalina. Tem-se também verificado a ocorrência de deformações elipsoidais muito significativas em iões de enxofre nos compostos semelhantes a pirite.
As dimensões atómicas são milhares de vezes mais pequenas do que os comprimentos de onda da luz (400–700 nm), pelo que não podem ser observados através de um microscópio óptico. No entanto, é possível observar átomos individuais através de um microscópio de corrente de tunelamento. Para ter uma noção de grandeza do átomo, considere-se que um cabelo humano normal tem cerca de um milhão de átomos de largura. Uma gota de água contém cerca de dois mil triliões (221) de átomos de oxigénio e o dobro desse valor de átomos de hidrogénio. Um diamante de um quilate com uma massa de 2×10−4 kg contém dez mil trilhões (1022) de átomos de carbono. Se uma maçã fosse ampliada para o tamanho da Terra, os átomos teriam aproximadamente o tamanho da maçã original.
Radioatividade
As formas mais comuns de emissão radioativa são alfa, beta e gama.
Na emissão alfa consiste na emissão pelo núcleo de uma partícula alfa, que é um núcleo de hélio, com dois prótons e dois nêutrons, resultando em um novo elemento com um número atómico inferior.
A emissão beta e captura eletrônica são processos regulados pela força fraca, resultado da transformação de um nêutron num próton ou de um próton num nêutron. A transição de nêutron para próton é acompanhada pela emissão de um elétron e de um antineutrino, enquanto que a transição de próton para nêutron (excepto no caso da captura eletrônica) causa e emissão de um positrão e de um neutrino. As emissões de elétrons ou positrões são denominadas partículas beta. O decaimento beta aumenta ou diminui em um o número atómico do núcleo. A captura de elétrons é mais comum do que a emissão de positrões, uma vez que requer menos energia. Neste tipo de decaimento, o núcleo absorve um elétron, em vez de o positrão ser emitido pelo núcleo. Neste processo, o neutrino continua a ser emitido e o próton é alterado para nêutron.
A emissão gama é o resultado de uma alteração do nível de energia do núcleo para um estado inferior, resultando na emissão de radiação eletromagnética. O estado de excitação de um núcleo que resulte em emissão gama normalmente ocorre após a emissão de partículas alfa ou beta. Assim, uma emissão gama sucede geralmente a uma emissão alfa ou beta.
Os restantes tipos mais raros de emissão radioativa incluem a ejeção de nêutrons, prótons ou grupos de núcleons a partir do núcleo, ou mais do que uma partícula beta. A conversão interna é um processo análogo à emissão gama, mas que permite ao núcleo excitado perder energia de forma diferente, ao produzir elétrons de alta velocidade que não são raios beta, seguidos pela produção de fotões de elevada energia que não são raios gama. Alguns núcleos de grande dimensão explodem em dois ou mais fragmentos, com carga elétrica e de massa variada, e de vários nêutrons, numa emissão denominada fissão nuclear espontânea.
Cada isótopo radioativo tem um período de emissão ou decaimento característico - a meia-vida - que é determinado pela quantidade de tempo necessária para o decaimento de metade de uma amostra. Trata-se de um processo de decaimento exponencial que diminui de forma constante a proporção do isótopo restante em 50% a cada meia-vida. Desta forma, depois de duas meias-vidas, só 25% do isótopo é que está presente, e assim por diante.[42]
Momento magnético
As partículas elementares possuem uma propriedade mecânica quântica intrínseca denominada spin. Isto é análogo ao momento angular de um objeto em rotação à volta do seu centro de massa, embora em termos precisos se acredite que estas partículas sejam similares a pontos e não se possa dizer que estejam em rotação. O spin é medido em unidades da constante de Planck reduzidas (h), tendo os elétrons, prótons e nêutrons todos um spin de ½ ħ. Num átomo, para além do spin, os elétrons em movimento ao redor do núcleo possuem momento angular orbital, enquanto que o próprio núcleo possui momento angular devido ao spin nuclear.
O campo magnético produzido por um átomo - o seu momento magnético - é determinado por estas diferentes formas de momento angular, uma vez que um objeto com carga elétrica em rotação produz um campo magnético. No entanto, a principal contribuição vem do próprio spin. Devido à natureza dos elétrons em obedecer ao princípio de exclusão de Pauli, pelo qual dois elétrons não podem apresentar o mesmo estado quântico, os elétrons ligados emparelham-se entre si, ficando um dos membros num estado de spin positivo e o outro num estado de spin negativo. Assim, os spins cancelam-se mutuamente, diminuindo o momento de dipolo magnético para zero em determinados átomos com número par de elétrons.[46]
Em elementos ferromagnéticos como o ferro, o número ímpar de elétrons leva a que haja um elétron não emparelhado e a que exista um momento magnético. As órbitas de átomos vizinhos sobrepõem-se, e quando os spins de elétrons se alinham entre si atinge-se um estado de energia inferior denominado interação de troca. Quando os momentos magnéticos dos átomos ferromagnéticos se encontram alinhados, o material é capaz de produzir um campo macroscópico mensurável. Os materiais paramagnéticos possuem átomos com momentos magnéticos que, na ausência de campos magnéticos, se alinham em direções aleatórias, mas em que na presença de um campo se alinham individualmente.[46][47]
O núcleo de um átomo pode também possuir spin próprio, ou spin nuclear. Normalmente, os núcleos estão alinhados em direções aleatórias devido ao equilíbrio térmico. No entanto, para determinados elementos (como o xénon-129) é possível polarizar uma grande proporção dos estados de spin nuclear para que sejam alinhados na mesma direção - uma condição denominada "hiperpolarização" - o que tem aplicações notáveis na ressonância magnética.
Níveis de energia
Quando um elétron se encontra ligado a um átomo, possui energia potencial inversamente proporcional à sua distância em relação ao núcleo. Isto é medido pela quantidade de energia necessária para separar o elétron do átomo, sendo geralmente expressa em unidade de elétrão-volt (eV). No modelo mecânico quântico, um elétron ligado apenas pode ocupar um conjunto de estados com centro no núcleo, em que cada estado corresponde a um nível específico de energia. O estado de energia mínima de um elétron ligado denomina-se estado fundamental , enquanto que a transição para níveis mais altos de energia resulta num estado excitado.
Para um elétron poder transitar entre dois estados diferentes, deve absorver ou emitir um fotão cuja energia corresponda à diferença entre os potenciais de energia desses níveis. A energia de um fotão emitido é proporcional à sua frequência, fazendo com que estes níveis de energia específicos apareçam como bandas distintas no espectro eletromagnético.[51] Cada elemento tem um espectro característico que pode variar em função da carga nuclear, de subcamadas preenchidas por elétrons e de interações eletromagnéticas entre os elétrons e outros fatores.
Quando se passa um espectro contínuo de energia através de um gás ou plasma, alguns dos fotões são absorvidos pelos átomos, causando alterações nos níveis de energia dos elétrons. Os elétrons assim excitados que permaneçam ligados ao seu átomo vão, de forma espontânea, emitir esta sobrecarga de energia através de um fotão que se movimentará numa direção aleatória, levando a que o elétron regresse aos níveis de energia anteriores. Assim, os átomos comportam-se como um filtro que forma uma série de bandas de absorção no espectro de energia. A medição espectroscópica da força e largura das linhas espectrais permite determinar a composição e propriedades físicas de uma substância.
Quando observadas ao pormenor, algumas linhas espectrais revelam a existência de um desdobramento em estrutura fina. Isto ocorre devido à interação spin-órbita, uma interação entre o spin e movimento do elétron mais afastado do centro.[54] Quando um átomo se encontra num campo magnético exterior, as linhas espectrais dividem-se em três ou mais componentes; um fenómeno denominado efeito Zeeman. Isto é causado pela interação do campo magnético com o momento magnético do átomo e dos seus elétrons. Alguns átomos podem ter múltiplas configurações eletrónicas com o mesmo nível de energia, aparecendo assim como uma única linha espectral. A interação do campo magnético com o átomo altera estas configurações eletrónicas para níveis de energia ligeiramente diferentes, o que resulta em várias linhas espectrais.[55] A presença de um campo elétrico externo pode provocar nas linhas espectrais desdobramentos e alterações semelhantes, ao modificar os níveis de energia dos elétrons, um fenómeno denominado efeito Stark.
Se um elétron ligado se encontra num estado excitado, um fotão que com ele interaja e tenha um nível de energia apropriado pode provocar a emissão estimulada de um fotão com um nível de energia correspondente. Para que isto ocorra, o elétron deve descer para um estado energético inferior e que tenha um diferencial de energia correspondente à energia do fotão que com ele interage. O fotão emitido e o fotão de interação irão então mover-se paralelamente e com fases iguais. Isto é, os padrões de onda dos dois fotões vão-se sincronizar. Esta propriedade física é usada para produzir lasers, que são capazes de emitir um raio coerente de luz através numa banda de frequência estreita.[57]
Valência
Os elementos químicos são geralmente representados numa tabela periódica, organizada de forma a mostrar as principais propriedades químicas e na qual os elementos com o mesmo número de elétrons de valência formam um grupo alinhado ao longo da mesma coluna na tabela. Os elementos mais à direita da tabela têm a sua camada externa completamente preenchida com elétrons, o que dá origem a elementos quimicamente inertes conhecidos como gases nobres.[59][60]
Estados
Os átomos encontram-se em diferentes estados de matéria, que dependem de condições físicas como a temperatura ou pressão. Ao serem alteradas as condições, os materiais podem alternar entre os estados sólido, líquido, gasoso ou plasmático. Dentro de um determinado estado, um material pode também existir em diferentes fases. Por exemplo, o carbono sólido pode existir enquanto grafite ou diamante.
A temperaturas próximas do zero absoluto, os átomos podem formar um condensado de Bose-Einstein, no qual os efeitos mecânicos quânticos, que geralmente só são observados a uma escala atómica, se tornam visíveis a uma escala macroscópica. Este grupo de átomos extremamente arrefecido comporta-se então como um único átomo, o que permite observações fundamentais do comportamento mecânico.